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A B S T R A C T

Surface Electromyography (sEMG) is a technique for measuring muscle activity by recording electrical signals
from the surface of the body. It is widely used in fields such as medical diagnosis, human–computer interaction,
and sports injury rehabilitation. The detection of the onset and offset of muscle activation is a longstanding
challenge in sEMG analysis. This study pioneers the implementation, configuration, and evaluation of Particle
Swarm Optimization (PSO) against other optimization algorithms for sEMG signal detection, including Genetic
algorithms (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO), and Tabu Search (TS). The results
show that the PSO algorithm achieves the highest median accuracy and F1-Score and is the fastest among the
selected algorithms but has lower stability compared to Genetic algorithms and Ant colony optimization. The
design and value of the cost function had a significant impact on the results, with optimal results obtained when
the cost value was between 0.1203 and 0.1384. The use of these algorithms improved detection efficiency and
reduced the need for manual parameter adjustment. To the best of our knowledge, no published studies have
utilized Simulated Annealing, Ant colony optimization, and Tabu search meta-heuristic algorithms to detect
sEMG signal onsets.
. Introduction

Surface Electromyography (sEMG) is a technique that records elec-
rical signals from the surface of the human body to measure muscle
ctivity [1]. It has a range of applications, such as medical diagnosis,
uman–computer interaction, and sports injury rehabilitation [2,3].
espite its usefulness, identifying the onset and offset of muscle ac-

ivation in sEMG analysis remains a challenge, which has been the
ocus of research for many years. To tackle this issue, researchers
ave developed automatic detection algorithms, such as the threshold
lgorithm and the maximum likelihood algorithm, which have been
ffective but are not fully automated and require manual input of
arameters [4,5].

The threshold algorithm and maximum likelihood algorithm are
idely used and established detection methods in the field of sEMG

ignal analysis [5–10], however, their accuracy is contingent on the cor-
ect input of parameters, which is traditionally accomplished through
anual estimation by experts [4]. This manual input process detracts
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from the automation of the detection process and increases the risk of
inaccurate results. Recently, the integration of optimization algorithms
has opened up new avenues for automatic parameter estimation and
improved the accuracy of the detection process.

Some studies have utilized meta-heuristic optimization algorithms
in the detection process to determine the optimal parameters. This
involves creating a cost function and then utilizing optimization algo-
rithms to minimize it, resulting in the identification of the parameters
that yield the lowest value of the cost function.

Recent studies have shown the efficacy of meta-heuristic optimiza-
tion algorithms in detecting sEMG signal onsets and offsets. These
algorithms, using random search, can handle a broad range of prob-
lems and identify optimal parameters by iteratively minimizing the
objective function [11,12]. This reduces the manual effort involved
in adjusting parameters and improves the detection efficiency of the
algorithm. For instance, a study by Rashid et al. [5] combined Particle
Swarm Optimization (PSO) and extended Double Threshold Algorithm
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(eDTA) to deduce global parameters and detect onsets/offsets pairs
automatically. This resulted in the detection accuracy of over 95%,
reducing the dependence on parameters estimated by experts. Another
study by Magda et al. [4] used Genetic Algorithms (GA) to optimize
the threshold detector, and it was observed that GA could obtain global
parameters automatically.

However, these studies have only focused on the use of a single
optimization algorithm and there has been limited comparison of the
performance of different algorithms. It remains unclear whether there
are differences between optimization algorithms when applied to sEMG
signal analysis and what their advantages and disadvantages are in
various scenarios.

The aim of this study is to compare and analyze the impact of dif-
ferent optimization algorithms on the detection of sEMG signal onsets
and offsets. The optimization algorithms under examination are Ge-
netic Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO), Tabu Search (TS), and Simulated Annealing (SA).
These algorithms are used to determine the input parameters for the
onsets/offsets detection algorithm.

The following are the main contributions of this research work.

1. A comprehensive review establishes the need for comparative
evaluation and highlights research gaps in sEMG signal detection
optimization algorithms.

2. The paper compares the detection quality of the optimization
algorithms, including Genetic Algorithms (GA), Ant Colony Op-
timization (ACO), Particle Swarm Optimization (PSO), Tabu
Search (TS), and Simulated Annealing (SA). The optimization
algorithms provide similar quality with small median and in-
terquartile range differences. Particle Swarm Optimization (PSO)
outperforms others, and Simulated Annealing (SA) performs
relatively poorer.

3. The paper evaluates algorithm efficiency based on runtime. Par-
ticle Swarm Optimization (PSO) is the fastest, showcasing its
efficiency. Simulated Annealing (SA) is the slowest.

4. The paper assesses algorithm stability. Genetic Algorithms (GA)
and Ant Colony Optimization (ACO) show higher stability (lower
interquartile range (IQR)). Particle Swarm Optimization (PSO)
and Tabu Search (TS) exhibit higher variability. Simulated An-
nealing (SA) has a higher runtime interquartile range (IQR) after
setting a cost value threshold.

5. The paper identifies factors influencing algorithm performance.
Muscle activity count < 21 leads to unacceptable accuracy.
Different algorithms yield significantly different optimal param-
eters. Cost function design impacts results (Accuracy, F1-Score,
Degree Over Detection (OD), Degree Under Detection (UD)).

6. The paper provides practical insights. Optimal detection results
were achieved within the cost value range of 0.1203 to 0.1384. It
helps to guide cost value selection for real-world detection tasks.

To assess the differences and benefits, and drawbacks of each algo-
rithm, the detection results generated using their respective parameters
are compared. Our comparison framework is based on a confusion
matrix that takes into account three key metrics, i.e., quality, efficiency,
and stability.

Section 2 of the rest of the paper introduces the background infor-
mation, including the introduction to the sEMG signals, their detection,
and the basic principles of heuristic optimization algorithms. Section 3
provides a review of the various algorithms used for onsets/offsets de-
tection, with a focus on the selected optimization algorithms and their
core processes. Section 4 details the experimental design, including
the setup of the algorithms, the data source, the validation method,
evaluation metrics, and tools used in the experiment. Sections 5 and
6 analyze and discuss the results of the experiment using various
matrices, comparing the differences between the algorithms. Finally,
the last section concludes the study, summarizing the findings and
limitations and outlining future work.
2

2. Background

In this section, the background information related to the detection
of onsets and offsets in Surface Electromyography (sEMG) signals is
presented. The characteristics and applications of sEMG signals are dis-
cussed, as well as the technologies used for onset and offset detection.
The commonly utilized meta-heuristic optimization algorithms in this
research area are also covered. Additionally, the current state of the
field is presented, emphasizing the challenges and limitations of current
techniques and highlighting the gaps in research.

2.1. Surface Electromyography (sEMG)

EMG, or Electromyography, is a method for measuring and record-
ing the electrical activity of muscles. This information can be used to
identify neuromuscular abnormalities and gauge muscle performance.
Specifically, surface EMG (sEMG) measures electrical impulses on the
skin’s surface to reflect the nervous system’s control of shallow muscle
contraction [1,13]. Surface Electromyography (sEMG) involves using
sensors placed on the skin to monitor and document the electrical
activity in the muscles beneath. The collected signals can be easily
analyzed to reveal details about the pattern of muscle contractions,
their intensity, and the general state of muscle function. Owing to its
accessibility and usefulness, the analysis of sEMG signals has become
a widely studied area in rehabilitation and exercise science [4,14].
For instance, in the field of rehabilitation medicine, sEMG signals are
utilized to determine movement intentions and assist individuals with
disabilities in regaining movement capabilities [15].

The analysis of Surface Electromyography (sEMG) signals can be
difficult due to the weak nature of these signals, which typically have
amplitudes of less than 5 mV and a frequency range between 6–500 Hz,
with the most common range being 20–150 Hz [16]. The accuracy
of analysis results can be impacted by the presence of noise sources
such as power line interference, radio transmission, crosstalk from
other muscle signals, and the electrical conductivity of skin tissue and
fat [4,17]. The significance of utilizing effective tools and algorithms
is emphasized by the difficulties faced in analyzing sEMG signals. This
study aims to detect the onset and offset, and the algorithms utilized
in this process are discussed in the literature review section.

2.2. sEMG onsets/offsets detection

Accurate detection of the beginning and end of muscle contractions,
known as onsets and offsets, is important in areas such as motion
control and muscle ability assessment. Onsets and offsets are typically
indicated by a change in the voltage value of the signal and correspond
to the start and end of muscle activity [4,15]. The duration between the
onsets and offsets represents the length of muscle activity. Examples
of its significance include proper analysis of normal and abnormal
swallowing processes [18].

The detection of onsets and offsets in sEMG signals is of utmost
importance in the field of human health, where accuracy, reliability,
and efficiency are critical factors. The threshold detection algorithm
and the maximum likelihood detection algorithms are two common
methods for onsets/offsets detection [2,6]. However, these algorithms
often require expert input for the initial parameters, which can limit
their automation and accuracy. With recent advancements in optimiza-
tion algorithms, there is a growing interest in using these methods to
automatically determine the parameters and maximize the automation
of onsets/offsets detection [19–21].
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2.3. Optimization algorithms and metaheuristic optimization algorithms

Optimization is a method used to find the best solution among
multiple options for a given problem. It involves transforming the
problem into a mathematical model, where variables, constraints, and
an objective function are defined. Optimization algorithms then aim to
find a solution that minimizes the value of the objective function [12].
Examples of optimization problems include finding the shortest route
for a pipe-laying project and selecting parameters to minimize project
costs [22].

The field of optimization algorithms encompasses a diverse set
of classification methods, and there is a lack of agreement among
academic experts. To provide an overview of the meta-heuristic op-
timization algorithms used in this study, we adopt the categorization
method proposed by Yang [23]. The algorithms can be divided into
two broad categories based on the presence of randomness: determin-
istic and stochastic [23]. Deterministic algorithms operate under the
assumption that a unique solution to an optimization problem can
be found through differentiation or enumeration [24]. The calculation
process does not involve any random elements, meaning that the same
input always results in the same output [12]. The gradient descent
algorithm falls under this category, for example. However, determin-
istic algorithms are limited in their application and are not suitable
for solving complex problems due to the requirement that the problem
has a clear mathematical expression and that the objective function is
continuous and differentiable [24].

Random optimization algorithms, such as meta-heuristic algorithms,
incorporate random elements into the algorithm, for instance, by ran-
domly generating the starting point or adding random movements to
increase the search area [25]. Meta-heuristic optimization algorithms
use randomness to broaden the search space and produce varied solu-
tions, preventing them from becoming trapped in local optimality [26].
They also incorporate a local search method, balancing the diversity
of random solutions with a concentrated search, allowing them to find
the best possible solution at a reasonable cost [27]. Unlike deterministic
optimization algorithms, meta-heuristic optimization algorithms do not
necessitate a precise mathematical expression of the objective function
and do not rely on its continuous and differentiable properties [24].
Therefore, they can be employed to solve nearly any optimization
problem. However, they do not guarantee that the obtained solution is
globally optimal, as opposed to deterministic algorithms, which provide
a unique optimal solution [26].

Previous research has acknowledged the sensitivity of onset/offset
detection algorithms to their parameters, with the detection accuracy
being contingent upon the accuracy of the input parameters [4]. How-
ever, there is a lack of a mathematical theory to guide the selection
of these parameters [2]. Given that the detection algorithms lack an
explicit analytical expression and are not continuous and differentiable,
the use of a meta-heuristic algorithm appears to be an appropriate
solution.

Some of the well-known meta-heuristic algorithms are Genetic Al-
gorithms (GA) based on Darwinian evolution, the Simulated Annealing
(SA) algorithm modeled after the process of metal annealing, the Ant
Colony Optimization (ACO) algorithm, the Particle Swarm Optimiza-
tion (PSO) algorithm that imitates the behavior of natural animal
groups, and the Tabu Search (TS) algorithm that mirrors human mem-
ory [28,29]. These meta-heuristic optimization algorithms have been
widely used and have been demonstrated to possess various bene-
fits [30,31]. This study focuses on GA, Simulated Annealing (SA), Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO), and
Tabu Search (TS), and a comprehensive examination of their appli-
cations, advantages, and disadvantages is presented in the literature
review section.
3

3. Existing research

Existing research on the automated detection of Surface Electromyo-
graphy (sEMG) signal onsets and offsets has resulted in the creation of
multiple algorithms, which can be grouped into three categories based
on their role in the detection process. The first category encompasses
algorithms specifically designed for onsets and offsets detection, such
as the Threshold Algorithm and the Maximum Likelihood Algorithm.
The second category encompasses noise reduction algorithms such as
the Teager–Kaiser Energy Operator and the Wavelet Transform. The
third category consists of optimization algorithms, which are used
to determine input parameters for the onsets and offsets detection
function.

3.1. Detection algorithms

Manual observation by experienced experts was previously used for
the detection of onsets/offsets. However, this method is not reliable or
efficient due to the dependence on the expert’s experience and knowl-
edge [32]. Consequently, researchers have concentrated their efforts
on creating automated techniques for identifying the start and end of
sEMG signals. The two widely employed algorithms for this purpose
are the threshold detector algorithm and the maximum likelihood (ML)
algorithm.

3.1.1. Threshold detector
The threshold detection algorithm relies on the idea that when

muscle activity starts, the amplitude of the muscle signal exceeds a
set threshold [6]. The first single threshold algorithm was proposed
in a study by Hodges and Bui [6] which compared and analyzed
27 sEMG processing methods and determined the optimal parame-
ter combination and threshold for onset detection through statistical
analysis.

The concept of a double threshold detection algorithm was first
introduced in the research by Hodges and Bui [6] and further improved
upon by Micera et al. [9]. The work of Severini et al. [8] further
improved the double threshold algorithm, and the latest improve-
ment is the extended Double Threshold Algorithm (eDTA) proposed
by Rashid et al. [5]. The eDTA is capable of adapting to changes in the
signal-to-noise ratio (SNR) and adjusts the detection parameters accord-
ingly, enhancing the performance of the double-threshold detection
algorithm.

Threshold detection algorithms have the benefit of being simple and
straightforward to implement. However, the manual specification of
detection parameters by experts before detection can lead to inconsis-
tencies in the results, as the quality of these parameters depends on the
expert’s knowledge and experience [2].

3.1.2. Maximum Likelihood (ML) algorithm
The Maximum Likelihood algorithm is a statistical approach that

determines the distribution of the signal model first and then uses the
baseline sample to estimate the model parameters [2]. Gaussian and
Laplace distributions are commonly used as conventional models. The
GLR algorithm was proposed by Micera et al. [9]. It is less sensitive to
low sEMG activity than the threshold algorithm but still relies on the
muscle activity and baseline activity’s probability density functions and
signal characteristics [10].

On the other hand, Selvan et al. [10] proposed the PLM algo-
rithm based on Laplace Probability Distribution Function (PDF), which
overcomes some of the limitations of the ML algorithm. However,
ML algorithms require more information about the signal compared
to the threshold algorithms, which are straightforward and simple to
implement [2].
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3.2. Auxiliary algorithms

Auxiliary algorithms are frequently employed before carrying out
the detection process. This is because preprocessing the signal has been
shown to enhance detection performance [2]. Two common preprocess-
ing techniques are the Teager–Kaiser energy operator and wavelet tem-
plate matching. The Teager–Kaiser algorithm increases the separation
between the muscle activity signals and any background noise [33],
while wavelet template matching separates the muscle activity signals
from the noise. These algorithms have been shown to lead to improved
detection results and have become essential components in the sEMG
signal detection process, typically being applied before conducting any
analysis.

3.2.1. Teager–Kaiser Energy Operator (TKEO)
The Teager–Kaiser Energy Operator (TKEO) was first introduced in

the 1990s for processing audio signals, but it has since been applied
in sEMG analysis [34]. The TKEO calculates the energy of muscle
signals during contraction based on fluctuations in their amplitude and
frequency, which improves muscle activity analysis [33].

TKEO has been employed in various ways to enhance sEMG analy-
sis, such as reducing sEMG noise and boosting the energy of muscle
activity movement units [35]. Additionally, it has been utilized to
identify the onset of sEMG signals [18]. In a study, TKEO was inte-
grated into three commonly used detection algorithms: visual detection,
threshold method, and approximated generalized likelihood ratio [33].

The results indicated that incorporating TKEO into popular sEMG
onset detection methods improved their performance without increas-
ing their complexity. The authors, therefore, recommended using TKEO
as a standard component in sEMG onset detection algorithms.

3.2.2. Wavelet template matching
The authors of Restrepo-Agudelo et al. [18] combined the Teager–

Kaiser Energy Operator (TKEO) and wavelet template matching to
eliminate sEMG signal noise for infrahyoid analysis and then applied
the threshold algorithm to extract muscle activity signals. This ap-
proach demonstrated promising results in enhancing the performance
of sEMG onset detection.

3.3. Optimization method applied in sEMG onset detection

Selection and adjustment of parameters play a crucial role in the
accuracy of the detection results obtained from the algorithms. Thresh-
old detection algorithms are highly sensitive to these parameters and
require experts to set their values beforehand. On the other hand,
statistical algorithms such as ML functions have internal parameters
that need to be determined. Typically, researchers use test or simulation
data to determine the optimal values of these parameters through
repeated verification [2].

Recent advancements in machine learning theory have paved the
way for the use of optimization algorithms to determine the input
parameters of detection algorithms. This is done by minimizing the
value of the objective function, improving the accuracy of the detection
results.

3.3.1. Particle Swarm Optimization (PSO) algorithm
The Particle Swarm Optimization (PSO) algorithm, introduced by

Eberhart and Kennedy [36], is a meta-heuristic optimization method
that mimics the predatory behavior of birds to find the optimal solution.
The algorithm begins with a group of random particles and updates
their position and velocity vectors in each iteration based on the best
solution found by each particle (pBest) and the best solution found
by the entire swarm (gBest). In a study, Rashid et al. [5] used the
Particle Swarm Optimization (PSO) algorithm in conjunction with an
eDTA to automatically detect onsets/offsets pairs and determine the
global detection parameters. This research showed that utilizing PSO
4

reduced the dependence on parameters set by experts and improved
the accuracy of the detection results to over 95%.

The basic pseudo code of PSO is given in Algorithm 1, which works
in an iterative manner as follows. Initially, every particle 𝑝𝑖 is randomly
initialized (Line 1) and the location and velocity are assigned to 𝑝𝑖 (Line
3). Let 𝑇 be the count of total iterations (Line 4), and in each iteration 𝑡,
the fitness value of 𝑝𝑖 is calculated based on fitness function 𝑓 (Line 7).
Let 𝑝𝑜𝑝𝑡𝑖 be the best fitness value achieved by 𝑝𝑖 in previous iterations,
and if in iteration 𝑡, the fitness value of 𝑝𝑖(𝑡) is better than 𝑝𝑜𝑝𝑡𝑖 , we
update 𝑝𝑜𝑝𝑡𝑖 to 𝑝𝑖(𝑡) (Line 9). Similarly, we update 𝑝𝑜𝑝𝑡, the optimal value
achieved by any of the particles in the swarm (Line 11). In the end, the
position and velocity of each particle are updated (Line 12, Line 13).

Procedure 1 Particle Swarm Optimization
1: 𝑃 ← {𝑝1, 𝑝2,… , 𝑝𝑁} ⊳ population of randomly initialized 𝑁

particles
2: for each 𝑝𝑖 ∈ 𝑃 do
3: initialize 𝑣𝑖
4: let 𝑇 ← iteration count
5: while 𝑡 < 𝑇 do
6: for each 𝑝𝑖 ∈ 𝑃 do
7: calculate 𝑓

(

𝑝𝑖(𝑡)
)

8: if 𝑓
(

𝑝𝑖(𝑡)
)

> 𝑓 (𝑝𝑜𝑝𝑡𝑖 ) then
9: 𝑝𝑜𝑝𝑡𝑖 ← 𝑝𝑖(𝑡)

0: if 𝑓
(

𝑝𝑖(𝑡)
)

> 𝑓 (𝑝𝑜𝑝𝑡) then
1: 𝑝𝑜𝑝𝑡 ← 𝑝𝑖(𝑡)

2: 𝑝𝑖(𝑡 + 1) ← 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)
3: update 𝑣𝑖

3.3.2. Genetic Algorithm (GA)
The Genetic Algorithm (GA), introduced by Holland [25], is a global

search and optimization method that emulates the biological process of
natural selection. It starts with an initial population and performs selec-
tion, reproduction, crossover, and mutation operations to generate new
generations and find the optimal solution. In a study by Magda et al.
[4], GA was used to optimize the threshold detector. The results showed
that the GA was able to find optimal global parameters automatically.

The pseudo-code of the GA algorithm is shown as Algorithm 2. The
algorithm starts by choosing the initial population and initializes it
(Line 1). The fitness of each individual is evaluated to find the overall
fitness of the population (Line 2). Survival of the fittest is done by
performing multiple iterations on the initially selected population (Line
3). The best-ranking individuals are selected as parents to reproduce
(Line 4). Crossover and mutation operations are performed to breed
new generation 𝑃 ∗ (Line 5). The fitness of each individual in 𝑃 ∗ is
alculated (Line 6). Worst-ranked individuals of the population (Line
) are replaced by the new generation 𝑃 ∗ until the best individuals
emain in the population (Line 8).

Procedure 2 Genetic Algorithms
1: 𝑃 ← ChooseInitialPopulation()
2: Fitness(𝑃 )
3: while termination condition not met do
4: 𝐵 ← BestIndividuals(𝑃 )
5: 𝑃 ∗ ← CrossOver(𝐵) & Mutation(𝐵)
6: Fitness(𝑃 ∗)
7: 𝑊 ←WorstRanked(𝑃 )
8: 𝑃+ ← Replace(𝑃 ∗,𝑊 )

The genetic algorithm is better than predictable artificial intelli-
gence in terms of robustness. Dissimilar to older artificial systems, they
do not break easily even if the inputs are altered somewhat, huge state-
space, or in the occurrence of reasonable noise. Moreover, in searching
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an n-dimensional surface or multi-modal state-space, a GA may de-
liver significant benefits over the more usual search of optimization
techniques, e.g., praxis, heuristic, breath-first, linear programming, and
depth-first.

3.4. Machine learning and optimization algorithms

Several recent studies have addressed various aspects of optimiza-
tion algorithms and machine learning techniques. Singh et al. proposed
a load balancing and service discovery approach using Docker Swarm
for microservice-based big data applications [37]. Slathia et al. pre-
sented a performance evaluation of a situational-based fuzzy linear pro-
gramming problem for job assessment [38]. Pooja et al. conducted an
analysis of clustering algorithms for facility location–allocation prob-
lems [39]. Anupong et al. utilized deep learning algorithms to generate
photovoltaic renewable energy in saline water analysis via an oxidation
process [40]. Mekala et al. proposed an efficient LiDAR-trajectory
affinity model for autonomous vehicle orchestration [41].

In the field of sentiment analysis, Vyas et al. developed RUemo, a
classification framework for Russia-Ukraine war-related societal emo-
tions on Twitter through machine learning [42]. Shanmuganathan et al.
reviewed state-of-the-art load-balancing algorithms for the mist-fog-
cloud-assisted paradigm [43]. Sharma et al. conducted software-based
sentiment analysis of clinical data for the healthcare sector [44]. Dhi-
man et al. proposed a blockchain-based covert software information
transmission method for Bitcoin [45].

In the domain of optimization algorithms, Nayak et al. presented
a comprehensive review of particle swarm optimization over the past
25 years [46]. Zhen et al. proposed an intelligent-based ensemble
deep learning model for security improvement in real-time wireless
communication [47]. Dhiman and Kumar introduced the spotted hyena
optimizer and emperor penguin optimizer, novel bio-inspired meta-
heuristic techniques for engineering applications [48,49]. Kaur et al.
proposed the tunicate swarm algorithm, a new bio-inspired metaheuris-
tic paradigm for global optimization [50]. Dhiman and Kaur presented
STOA, a bio-inspired optimization algorithm for industrial engineering
problems [51].

Other studies focused on specific applications. Kumar and Dhiman
conducted a comparative study of fuzzy optimization through fuzzy
number [52]. Chatterjee reviewed the relationship between artificial
intelligence and patentability [53]. Vaishnav et al. performed an an-
alytical review analysis for screening COVID-19 [54]. Gupta et al.
developed a crime tracking system using machine learning approaches
for people’s safety in India [55]. Sharma et al. applied transfer learning
and convolutional neural networks for breast cancer image classifica-
tion [56]. Shukla et al. proposed a self-aware execution environment
model for improving the performance of multicore systems [57]. Dhi-
man and Kumar proposed the Seagull Optimization Algorithm for
large-scale industrial engineering problems [58], while Dhiman et al.
introduced the Rat Swarm Optimizer for global optimization [59]. In
another work, Dhiman et al. presented BEPO, a novel binary emperor
penguin optimizer for automatic feature selection [60]. Dhiman devel-
oped ESA, a hybrid bio-inspired metaheuristic optimization approach
for engineering problems [61].

Overall, these papers contribute to advancing optimization algo-
rithms and various machine learning application domains, providing
valuable insights and novel solutions to their respective research areas.

3.5. Meta-heuristic optimization algorithms

As evident from the successful implementation of PSO and GA in
sEMG onsets/offsets detection, the process of determining the value
of parameters for the onsets/offsets detector can be considered an
optimization problem. Motivated by the successful application of PSO
and GA, this project aims to study and compare the feasibility of

three other commonly used heuristic search algorithms – Simulated

5

Annealing (SA), Ant Colony Optimization (ACO), and Tabu Search
(TS) – in sEMG signal detection. In this section, we examine the key
concepts, underlying processes, as well as the pros and cons of these
candidate algorithms.

3.5.1. Simulated Annealing (SA)
The Simulated Annealing (SA) algorithm, introduced by Kirkpatrick

et al. [62], is a heuristic global optimization technique that simulates
the annealing process of solid materials. Just as in the heating and cool-
ing process, the particles in a solid become organized from disorder,
leading to a reduction in internal energy to its minimum.

The Simulated Annealing (SA) algorithm operates by starting with a
high temperature and gradually decreasing it, using Metropolis rules to
randomly search for the optimal global solution of the target function
within the solution space. The algorithm enables the acceptance of
solutions that are worse than the current one, allowing it to escape local
extrema and reach the global optimum [62].

Simulated Annealing (SA) is a stochastic optimization algorithm
that is used to find a global optimum of a given cost function. It is
inspired by the physical annealing process and works by mimicking
the cooling of a material to reach a state of low energy. The algo-
rithm generates candidate solutions using random perturbations and
accepts or rejects them based on a probabilistic acceptance rule. The
acceptance probability is determined by the current temperature and
the difference between the current solution and the candidate solution.
The temperature is gradually reduced, leading to a decrease in the
acceptance of new solutions that are far from the current solution until
a final state is reached. Simulated Annealing (SA) is used in various
optimization problems, including the detection of signal onsets/offsets
in sEMG signals.

Procedure 3 Simulated Annealing
1: 𝑇 ← 𝑇𝑚𝑎𝑥
2: 𝑏𝑒𝑠𝑡 ← INIT()
3: while 𝑇 > 𝑇𝑚𝑖𝑛 do
4: 𝑛𝑒𝑥𝑡 ← NEIGHBOUR(𝑇 , 𝑏𝑒𝑠𝑡)
5: 𝛥𝐸 ← ENERGY(𝑛𝑒𝑥𝑡) − ENERGY(𝑏𝑒𝑠𝑡)
6: if 𝛥𝐸 < 0 then
7: 𝑏𝑒𝑠𝑡 ← 𝑛𝑒𝑥𝑡
8: else if random() < ACCEPT(𝑇 , 𝛥𝐸) then
9: 𝑏𝑒𝑠𝑡 ← 𝑛𝑒𝑥𝑡
0: 𝑇 ← COOLING(𝑇 , 𝑏𝑒𝑠𝑡)

Simulated Annealing (SA) has been applied in the analysis of sEMG
signals for parameter estimation. In [63], the Simulated Annealing (SA)
algorithm was used to optimize parameters in a human–computer inter-
action model, leading to the development of a lower limb rehabilitation
robot based on sEMG signals.

3.5.2. Ant Colony Optimization (ACO)
The Ant Colony Optimization (ACO) algorithm, introduced by

Dorigo et al. [64], is a heuristic global optimization method inspired
by the foraging behavior of ants. It simulates the behavior of ants
searching for food, where each ant leaves a trail of pheromones on the
path. Other ants in the colony then follow the path with the highest
pheromone concentration, leading to a positive feedback loop where
the most traveled path has the highest pheromone concentration. This
ultimately results in the entire colony finding the shortest route to the
food source [64].

The way the ants can explore the shortest trails between food
sources and their nest is an intriguing phenomenon. In the real world,
each ant interacts indirectly with the others through its pheromone,
a chemical substance left behind when they move. More pheromones
being emitted along a certain route makes that path more desirable.
So, more ants follow this way and finally, it is chosen as the best path
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Fig. 1. Path selections by ants using pheromone.

between the source of food and the nest [65]. As shown in Fig. 1,
two ant scouts choose two different paths when they start to forage
from their nests. Initially, no pheromone is produced on the two paths,
so these trails are selected with the same probability. However, the
scout who chooses the shorter path takes less time and returns to the
nest earlier than the other. Also, the pheromone accumulated on the
shorter path is more than the pheromone on the longer path in the
same period. Therefore, the shorter path is more likely to be chosen by
other ants in the nest. As a result, the phenomenon on the shorter path
is accumulated more quickly than the other, and the final shortest path
from the nest to the food is determined [65].

The pseudo-code of the Ant Colony Optimization (ACO) algorithm
for combinatorial problems is shown as Algorithm 4. First, parameters
and pheromone trails are initialized (Line 1). Available ants generate
possible solutions using the available pheromone and heuristics infor-
mation (Line 3). These possible solutions can optionally be improved
using a local search phase (Line 4). Finally, pheromone trails are
globally updated as per the pheromone search of ants (Line 5). The
above three steps are repeated until the optimal solution is achieved
(Line 2).

Procedure 4 Ant Colony Optimization
1: Initialization of parameters and pheromone trails
2: while termination condition not met do
3: ACOSolutionsConstruction( )
4: PossibleDaemonAction( ) ⊳ For example, Local Search
5: GlobalPheromoneUpdate( )

So far, no studies have been conducted to demonstrate the use
f Ant Colony Optimization (ACO) for parameter estimation in sEMG
nset/offset detection. However, Ant Colony Optimization (ACO) has
een utilized in other aspects of sEMG analysis.

In [66], an ACO-based classifier was developed by using a Gaus-
ian Mixture Model to cluster sEMG signals into burst and non-burst
egments, then feeding these results into the ACO algorithm to extract
lassification rules. These rules were able to effectively detect the
ctivation time of skeletal muscles from the sEMG signal.

Ant Colony Optimization (ACO) was also used for sEMG feature
election in [67]. The authors utilized the ACO algorithm for the
election and classification of sEMG signals.

.5.3. Tabu Search (TS)
The Tabu Search (TS) algorithm, introduced by Glover [25], is

global optimization method that uses heuristics and a ‘‘Tabu List’’
o keep track of the search history and avoid previously performed
perations. It starts with an initial feasible solution and uses heuristics
o choose a series of search directions. The best change in the objective
unction is then selected for movement. The core of the TS algorithm is
sing a ‘‘Tabu List’’ to keep track of the search history, avoid previously
erformed operations, and incentivize desirable states based on certain
riteria. The ‘‘Tabu List’’ serves as a short-term memory, reducing the
earch space and computational costs in comparison to other optimiza-
ion algorithms, such as the Genetic Algorithm (GA) [68]. The basic
rocess of the TS algorithm is depicted in Fig. 5.
6

In [68], a hybrid algorithm was created for parameter estimation
by combining the Tabu Search (TS) algorithm with the Particle Swarm
Optimization (PSO) algorithm. This hybrid algorithm was applied to
the control of prosthetic hands, which is a crucial application in sEMG
signal analysis. However, to date, no published studies have utilized
the TS algorithm solely to detect sEMG signal onsets/offsets.

3.6. Summary of existing work

To summarize the existing work, there are three categories of al-
gorithms used for sEMG onset/offset detection: detection algorithms,
auxiliary algorithms, and optimization methods. Detection algorithms
include threshold detection algorithms and maximum likelihood (ML)
algorithms. Auxiliary algorithms, such as the Teager–Kaiser Energy Op-
erator (TKEO) and wavelet template matching, are used for noise reduc-
tion and signal preprocessing of sEMG signals. Optimization methods,
such as Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA), are employed to determine the optimal parameters for detection
algorithms. Additionally, meta-heuristic optimization algorithms like
Simulated Annealing (SA), Ant Colony Optimization (ACO), and Tabu
Search (TS) show potential for parameter estimation in sEMG analysis.

The core of the detection process involves using onsets/offsets
detection algorithms, which can either be machine learning (ML) or
threshold-based. However, these algorithms typically require manual
parameter adjustment by experts. To overcome this challenge, various
researchers have incorporated meta-heuristic optimization algorithms
into the detection process to determine the necessary parameters au-
tomatically. These algorithms use random search to construct a cost
function and then optimize it to find the parameters that result in the
minimum value.

The Particle Swarm Optimization (PSO) and Genetic Algorithm (GA)
have already been effectively utilized in sEMG onsets/offsets detection.
While the Simulated Annealing (SA), Ant Colony Optimization (ACO),
and Tabu Search (TS) algorithms are also meta-heuristic optimization
methods, there have not yet been any published studies on their use in
sEMG onset detection. Despite their different principles, strengths, and
weaknesses, all the algorithms discussed in this section are potential
solutions for sEMG detection. The design and implementation methods,
as well as the comparison metrics, are discussed in the following
section.

4. Experiments design

The aim of this study is to evaluate and compare the effectiveness
and efficiency of the global optimization algorithms for the auto-
matic detection of onsets/offsets in sEMG signals. The procedures and
variables of these algorithms, the cost functions, the detection algo-
rithm, the dataset, and the evaluation metrics used for comparison, are
presented in this section.

4.1. Implementation details of optimization algorithms

This section aims to outline the key elements of the selected global
heuristic optimization algorithms, PSO, GA, Simulated Annealing (SA),
Ant Colony Optimization (ACO), and TS, including their implementa-
tion methods, crucial steps, and necessary parameters.

4.1.1. PSO implementation details
The PSO function in the MATLAB Global Optimization Toolbox

is used in this study. The updating method for particle velocity and
position is the primary method that affects the optimization result of
the PSO algorithm. The speed and position update formulas are shown
in Eq. (1) [36].

𝑉 𝑘
𝑖𝑑 = 𝜔𝑉 𝑘−1

𝑖𝑑 + 𝐴𝐶1 Rand()
(

𝑝 Best 𝑖𝑑 −𝑋𝑘−1
𝑖𝑑

)

( 𝑘−1)
+𝐴𝐶2 Rand() 𝑔 Best 𝑑 −𝑋𝑖𝑑
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Table 1
Parameters of PSO.

Swarm size
(Population)

Max iteration 𝜔 𝐴𝐶1 𝐴𝐶2

24 1600 [0.1, 1.1] 1.49 1.49

𝑋𝑘
𝑖𝑑 = 𝑋𝑘−1

𝑖𝑑 + 𝑉 𝑘−1
𝑖𝑑 (1)

The algorithm uses several parameters to regulate the solution
search space, including 𝜔 as the inertia weight, 𝐴𝐶1 and 𝐴𝐶2 as
acceleration constants, and the random function Rand(). The particles’
best positions, both individually (pBest) and globally (gBest), are also
considered in the algorithm. The velocity and position 𝑉𝑖𝑑 and 𝑋𝑖𝑑 of
each particle are updated based on these parameters in each iteration.

The value of 𝜔 is established through an adaptive random adjust-
ment process in MATLAB, with a range from 0.1 to 1.1 as described
in [69]. The optimal position of six neighboring particles, rather than
the global optimal position, is used to obtain the gBest value. Other
parameters of the PSO algorithm include the swarm size and the
maximum number of iterations. The swarm size is set to three times the
number of parameters in the detection function, which has eight input
parameters, resulting in a particle swarm of 24 particles. The maximum
iteration value is set to 200 times the number of parameters, equaling
1600. The crucial parameters are summarized in Table 1.

The chosen swarm size of 24 is justified by striking a balance
between exploration and exploitation, enabling effective exploration
of the solution space. This balance ensures that the algorithm has
sufficient diversity to explore different regions while converging toward
promising solutions. The maximum iteration limit of 1600 is justified
by providing ample iterations for the algorithm to refine and improve
solutions. A higher iteration count allows for a more comprehensive
exploration of the solution space, increasing the chances of finding
optimal solutions. The range of the inertia weight (𝜔) from 0.1 to 1.1 is
justified by achieving a balance between global and local search abili-
ties. This range allows the particles to explore a wide range of solutions
initially and gradually converge toward promising regions as the algo-
rithm progresses. Setting the acceleration coefficients (𝐴𝐶1 and 𝐴𝐶2)
to 1.49 is justified by maintaining a balanced exploration–exploitation
trade-off. These coefficients control the influence of personal and global
best positions on particle movements, enabling effective exploration
while exploiting promising solutions. These parameter choices aim to
optimize the performance of the PSO algorithm, but further fine-tuning
may be required to accommodate specific problem characteristics and
achieve optimal results.

4.1.2. GA implementation details
The GA algorithm used in this study was taken from the MAT-

LAB Global Optimization Toolbox. The process of parent selection,
crossover, and mutation greatly impacts the optimization results [70].
For this reason, ‘‘Stochastic Uniform’’, ‘‘Scattered’’, and ‘‘Gaussian’’
were used as the default functions for selection, crossover, and vari-
ation, respectively [71]. Another crucial factor is the ‘‘Elite Count’’,
which refers to the number of fittest chromosomes that are allowed
to survive and move on to the next generation. The default value for
the Elite Count is set to 5% of the population size.

As seen in Table 2, the population size and the maximum number
of generations were set to the default parameters of GA in MATLAB.
The population size was set to 50 if the number of parameters was less
than 5 and to 200 if it was more than 5. In this case, the number of
parameters in the detection function was 8, so the initial number of
chromosomes was set to 200. The maximum number of generations was
set to 100 times the number of parameters of the objective function,
resulting in a value of 800.

The chosen population size of 200 chromosomes facilitates diverse
exploration, enhancing the likelihood of discovering a favorable so-
lution. By allowing for a maximum of 800 generations, the genetic
7

Table 2
Parameters of GA.

Number of
chromosomes
(Population)

Max
generations

Selection
function

Crossover
function

Mutation
function

Elite
count

200 800 Stochastic
uniform

Scattered Gaussian 10

Table 3
Parameters of Simulated Annealing (SA).

Initial
temperature

Max
iteration

New solution
generating
function

Temperature
updating
schedule

Acceptance
function

100 4000 ‘annealingfast’ ‘temperatureexp’ ‘acceptancesa’

algorithm (GA) can thoroughly explore the solution space, potentially
identifying superior solutions. The utilization of Stochastic Uniform
selection aids in maintaining genetic diversity within the population
by probabilistically selecting individuals based on their fitness values.
Scattered crossover contributes to the preservation of diversity by
facilitating the exchange of genetic material at multiple random points.
Gaussian mutation introduces incremental modifications, enabling the
exploration of neighboring solutions. Lastly, the preservation of the
top 10 performing individuals in each generation ensures the retention
and potential improvement of the most promising solutions. These
parameter choices were made to optimize the GA’s ability to achieve
desirable outcomes and adapt to various problem scenarios.

4.1.3. Simulated Annealing (SA) implementation details
The Simulated Annealing (SA) algorithm applied in this study is

sourced from the Global Optimization Toolbox in MATLAB. The key
factors affecting the optimization results include the initial tempera-
ture, solution generation rules, acceptance criteria for new solutions,
and cooling method [22].

The input parameters for the Simulated Annealing (SA) algorithm
are set to their default values in MATLAB. The initial temperature is
set to 100, and the maximum number of iterations is 4000, which is
calculated by multiplying the number of objective function parameters
by 500.

The ‘annealingfast’ function, based on the Student t-distribution, is
used to generate new solutions, and the ‘acceptancesa’ function, based
on the Boltzmann probability density, is used to determine whether the
new solution is acceptable or not [71]. These functions are built into
the Simulated Annealing (SA) algorithm in MATLAB. The basic formula
is as Eq. (2).

𝑃𝑘 = 1

1 + 𝑒−
𝛥𝐸𝑘
𝑇

(2)

The acceptance of a new solution in the Simulated Annealing (SA)
algorithm is based on both the current temperature, T, and the differ-
ence in the objective function values, 𝛥𝐸𝑘, between the old and new
solutions. If 𝛥𝐸𝑘 is negative, the new solution is readily accepted as
the starting point for the next iteration. However, if 𝛥𝐸𝑘 is positive, a
probability, 𝑃𝑘, is calculated using the Boltzmann probability density
formula (as shown in Eq. (2)). The new solution is only accepted if 𝑃𝑘
is greater than a random number generated between 0 and 1.

The temperature function applied in the Simulated Annealing (SA)
algorithm is ‘temperatureexp’, which follows an exponential annealing
schedule. The values for the temperature function and other relevant
parameters are outlined in Table 3.

The initial temperature of 100 balances exploration and exploita-
tion. The maximum iteration limit of 4000 allows for sufficient it-
erations to refine solutions. The ‘annealingfast’ new solution gener-
ating function quickly generates diverse solutions. The ‘temperature-
exp’ temperature updating schedule gradually reduces randomness.
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𝜔

Table 4
Parameters of Ant Colony Optimization (ACO).

Ant colony size
(Population)

Max
iteration

Selection pressure
(q)

Deviation-Distance
ratio (𝜉)

40 800 0.5 0.85

The ‘acceptancesa’ acceptance function balances exploration and ex-
ploitation. These choices optimize the Simulated Annealing (SA) al-
gorithm’s performance, but fine-tuning may be needed for specific
problem characteristics and optimal results.

4.1.4. Ant Colony Optimization (ACO) implementation details
The Ant Colony Optimization (ACO) algorithm used in this study is

sourced from the Global Optimization Toolbox in MATLAB. Originally,
the ACO algorithm was used to solve discrete optimization problems
but was later optimized for the continuous domain by Socha and
Dorigo [72]. This optimized version is called ACOR and is well-suited
for this study as the input parameters of the detection algorithm,
eDTA, have continuous value distributions. The implementation of the
ACOR algorithm in this study is based on the open-source code ‘‘Ant
Colony Optimization for Continuous Domains (ACOR)’’ published in the
MATLAB Central File Exchange [73].

The ACOR algorithm stores the pheromone information of the start-
ing solution path in an archive table. The solutions are ranked based on
their objective function values, with the best solution being at the top.
The concentration of pheromones is calculated using Eq. (3) from [72],
where ‘‘q’’ stands for ‘‘Selection Pressure’’ and ‘‘k’’ is the rank of each
solution. The formula dictates that solutions with smaller objective
function values will have a higher concentration of pheromones. The
roulette algorithm is utilized in ACOR to select the path for each ant.
The probability calculation in the algorithm relies on 𝜔𝑙.

𝑙 = 1

𝑞𝑘
√

2𝜋
e
− (𝑙−1)2

2𝑞2𝑘2 (3)

Generating a new solution based on the selected path is another
crucial step in the ACOR algorithm. The normal distribution is em-
ployed for sampling, and the standard deviation is calculated using
Eq. (4) from [72]. ‘‘𝜉’’ represents the deviation-distance ratio, and ‘‘𝑆𝑖’’
signifies the 𝑖𝑡ℎ variable of the solution.

𝜎𝑖𝑙 = 𝜉
𝑘
∑

𝑒=1

|𝑠𝑖𝑒 − 𝑠𝑖𝑙|
𝑘 − 1

(4)

These above parameters are shown in Table 4.
The parameters chosen for the Ant Colony Optimization (ACO)

algorithm, as shown in Table above, were carefully selected to ensure
an effective balance between exploration and exploitation. A popu-
lation size of 40 ants enables sufficient exploration of the solution
space while maintaining computational efficiency. With a maximum
iteration of 800, the algorithm has ample iterations to refine solu-
tions without excessive computational cost. A selection pressure of
0.5 strikes a balance between exploiting the best-known solutions and
exploring alternative paths. Additionally, a deviation-distance ratio of
0.85 emphasizes exploration moderately by considering both deviation
and distance components in the pheromone update equation. These
parameter choices were made to optimize the performance of the Ant
Colony Optimization (ACO) algorithm, taking into account the specific
characteristics of the problem at hand.

4.1.5. Tabu Search (TS) implementation details
The Tabu Search (TS) algorithm applied in this research paper

is a modified version of the code presented by Xu et al. in [22]
for optimizing continuous functions. The initial solution is generated
randomly within the range of values for each variable. In the first half
of the iteration process, candidate solutions are generated by randomly

updating a single variable. During the second half of the iteration, all

8

Table 5
Parameters of Tabu search (TS).

Number of
candidate
solutions

Max
iteration

Tabu
length

Distance,
Function
values difference

Mutation
probability

40 800 200 0.5, 0.05 0.75

Table 6
Input parameters of ‘‘extended Double Threshold Algorithm’’ (eDTA) algorithm.

Parameter Description

𝐿𝑏 Length of the baseline segment
𝐾𝑏𝑡ℎ The rank of moving average value
𝑁𝑠𝑑 Number of standard deviations of the baseline segment
𝑇𝑜𝑛 Time for detecting an onset
𝑇𝑜𝑓𝑓 Time for detecting an offset
𝑇 𝑠 Time for the shortest sEMG burst
𝑁𝑛𝑡 Number of standard deviations of the root means

square (RMS) values of the detected bursts
𝑇𝑗 Time for the window in which two or more sEMG

bursts are joined into a single burst.

variables are updated randomly through the application of mutation
probability.

The core of the algorithm lies in the updating rules of the Tabu
table, as described by Xu et al. in [22]. The Tabu table holds 200
solutions, and with each iteration, the best solution from the candidate
set is added to the table while the oldest solution is removed to signify
its expiration.

A vital step in the algorithm is determining if the candidate solution
is in the Tabu table. If the candidate solution is close to a solution in
the Tabu table (calculated using 2-Norm) and their difference is not
significant, then the candidate solution is considered as being in the
Tabu state. The relevant parameters in the Tabu Search (TS) algorithm
are listed in Table 5.

The parameter selection for the Tabu Search (TS) algorithm, as
depicted in Table 5, was carefully made to optimize its performance
in balancing exploration and exploitation. The choice of 40 candidate
solutions allows for sufficient exploration of the solution space while
maintaining computational efficiency. With a maximum iteration of
800, the algorithm has an adequate number of iterations to refine
solutions without excessive computational cost. The tabu length of 200
ensures that previously visited solutions are temporarily prohibited,
promoting diversification in the search process. By considering both
distance and function values difference, with values of 0.5 and 0.05, re-
spectively, the algorithm can balance between exploring new solutions
and exploiting the best-known ones. Finally, a mutation probability
of 0.75 introduces a moderate level of randomness to the search,
facilitating the exploration of different regions in the solution space.
These parameter choices aim to optimize the performance of the Tabu
Search (TS) algorithm, considering the specific characteristics of the
problem at hand.

4.2. eDTA implementation details

The detection algorithm used in this study is based on the eDTA
algorithm from [5] and involves threshold detection. It requires eight
input parameters, including the sEMG signal, as listed in Table 6. The
algorithm outputs onset/offset pairs. These parameters can either be
manually adjusted by experts or obtained through optimization. The
comparison of the optimization algorithms in this study is based on the
estimation of these eight parameters.

4.3. Cost functions

In our experiments, optimization algorithms were utilized to deter-
mine the optimal input parameters by reducing the cost function value
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𝑋

through iterative processes [74]. In order to examine the effect of cost
function variations on optimization algorithms, two cost functions were
employed to calculate the detection results. These cost functions were
proposed in [5].

The first cost function is based on the comparison of the number of
onset/offset pairs identified by the detection algorithm and the actual
number. The formula for this cost function is represented as Eq. (5)
followed by its constraints and referred to as C1 in this study [5].

min
𝑃

‖𝑛
(

𝛬
(

𝑃𝑖, 𝑋
))

−𝑁𝑒‖2 +
𝑁𝐴
𝑁

+
𝐸𝐵
𝐸

(5)

with constraints:

𝐵𝑙 ⩽ 𝑃 ⩽ 𝐵𝑢

The second cost function used in this study, referred to as C2, is
based on expert-identified onsets and offsets, and is described by the
formula in Eq. (6) [5]. The formula employs the following variables:
𝛬, representing the eDTA detection algorithm with input parameters
𝑃𝑖; 𝐵𝑙 and 𝐵𝑢, the lower and upper boundaries of 𝑃𝑖 respectively; ’n
(.)’, denoting the number of onsets/offsets pairs obtained by the eDTA
detector; 𝑁𝑒, the number of onsets/offsets pairs identified by the expert;

, the input signal samples; 𝑁𝐴 to 𝑁 , representing the ratio of the
number of samples between onset and offset to the total signal samples;
and 𝐸𝐵 to 𝐸, representing the ratio of the energy of the samples
excluding muscle burst to the total signal energy. The energy 𝐸𝐵 and
𝐸 are calculated using the Teager–Kaiser operator.

min
𝑃

|

|

|

1 − 𝐶
(

𝛬
(

𝑃𝑖, 𝑋
)

, 𝑅
)

|

|

|2
(6)

with Constraints:

𝐵𝑙 ⩽ 𝑃 ⩽ 𝐵𝑢

In Eq. (5), the objective function aims to minimize the Euclidean
norm of the difference between 1 and the output of the function
𝐶
(

𝛬
(

𝑃𝑖, 𝑋
)

, 𝑅
)

. The function 𝐶 takes the inputs 𝛬(𝑃𝑖, 𝑋) and 𝑅. The
variable 𝑃 is the variable being optimized.

The constraints specify the lower bound (𝐵𝑙) and upper bound
(𝐵𝑢) on the variable 𝑃 , ensuring that its values fall within the spec-
ified range. These constraints restrict the feasible solutions in the
optimization problem.

The variable refers to concordance, which is determined by compar-
ing the onsets/offsets identified by the detection algorithm (𝛬) with the
expert-identified results (𝑅). The method of calculating concordance is
the same as accuracy and is described in Section 4.6.1. The parameters
(𝑃 ) necessary for the detection algorithm can be obtained by optimizing
these two cost functions. The assessment of these optimization algo-
rithms mainly focuses on comparing the results of the algorithm using
the parameters obtained from different optimizations.

In the study, two cost functions, C1 and C2, were used to evalu-
ate and optimize the input parameters of a detection algorithm. The
cost value of C1 represents the discrepancy between the detected
onset/offset pairs and the actual number, considering additional signal
characteristics. The cost value of C2 measures the agreement between
the detection results and expert-identified onsets and offsets. The op-
timization process aims to minimize these cost values, which serve as
a unitless measure of the error or discrepancy between the detected
results and the ground truth or expert-identified values. The study
compares different optimization algorithms based on their ability to
minimize these unitless cost values and improve the accuracy and
agreement with the reference data.

4.4. Dataset description

The study utilized sEMG data from 20 sets of joint activities and foot
dorsiflexion from 20 participants [75]. The sEMG signals were recorded
at a frequency of 500 Hz, and their amplitude was included in the
dataset. To evaluate the performance of each optimization algorithm,
the study compared it with expert manual identification results, which
were also part of the dataset. The number of muscle activities in each

dataset is shown in Table 7, providing a detailed breakdown.
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Table 7
Dataset and activities.

Dataset ID D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

No. of activities 50 50 50 50 50 50 21 51 50 30

Dataset ID D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

No. of activities 16 30 14 30 25 30 18 12 22 50

4.5. Cross-validation

We used cross-validation to determine the optimal parameters of the
model. Cross-validation is a technique aimed at evaluating the perfor-
mance of a model on new data and avoiding overfitting, as explained
in [76]. The training dataset, composed of sEMG signals and expert-
labeled onsets/offsets from 5 participants, was utilized to identify the
suitable input parameters (𝑃𝑖). The cross-validation design followed the
method outlined in [5] and implemented leave-p-out cross-validation
with 𝑝 = 4.

The cross-validation process involved removing one dataset from
the training set and using different optimization algorithms to obtain
the 𝑃𝑖 parameters. The cost function values were then calculated for
the remaining four datasets using these parameters, and the mean of
these values was determined. The process was repeated 5 times, and
the 𝑃𝑗 vector that produced the lowest mean cost value was used as
input parameters for eDTA, which was applied to 15 test datasets. The
detection results were compared and analyzed against expert-identified
outcomes, as illustrated in Fig. 2.

The method of leave-p-out cross-validation was applied to obtain
the 𝑃𝑖 parameters, with 𝑝 = 4. The first step involved removing
one dataset from the training set and using different optimization
algorithms to obtain the 𝑃𝑖 parameters. In the second step, the cost
function values were calculated for the remaining four datasets using
the 𝑃𝑖 parameters as input. Finally, the mean of these cost values was
determined. The cost function utilized in this process is shown in C2.

4.6. Comparative analysis

Quality, efficiency, and reliability are standard metrics for evaluat-
ing optimization algorithms [77]. This study uses these three indicators
as the evaluation framework and employs specific sub-indicators to
compare the performance of the selected meta-heuristic optimization
algorithms.

4.6.1. Quality metrics
The evaluation of predictive models often involves the use of a con-

fusion matrix, a widely accepted method in data mining theory [78].
Confusion matrices have been used to assess the performance of on-
sets/offsets detection algorithms [5,18,79]. In this study, these are used
to compare and analyze the quality of various optimization algorithms
for EMG onsets/offsets detection. The accuracy of expert identification
is assumed, and the results of the optimization algorithm are compared
to the expert results to construct the confusion matrix, which is shown
in Fig. 3.

In this study, the quality of different optimization algorithms for
EMG onsets/offsets detection is evaluated using quality metrics based
on the confusion matrix, including Accuracy, F1-Score, Degree Under
Detection (UD), Degree Over Detection, Area Under Curve (AUC), and
Detection Rate. These metrics are selected to compare the performance
of the optimization algorithms.

Accuracy. Accuracy refers to the proportion of correctly identified
signals, calculated by dividing the sum of true positive (TP) and true
negative (TN) results by the total number of signals tested. The for-
mula for accuracy is given in Eq. (7) in Refs. [80,80]. The term
‘‘Concordance’’ in Section 4.3 is equivalent to accuracy.

Accuracy = 𝑇𝑃𝑠 + 𝑇𝑁𝑠 (7)

𝑇𝑁𝑠 + 𝐹𝑁𝑠 + 𝐹𝑃𝑠 + 𝑇𝑃𝑠
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Fig. 2. Cross-validation scheme.
Fig. 3. Confusion matrix for sEMG.
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F1-score. Besides accuracy, the Recall and Precision indices, derived
from the confusion matrix, can evaluate the correctness and accuracy
of positive class recognition. These two metrics are often in opposition
to each other [80]. The study in [5] suggests that F1-Score, which is
the harmonic mean of Recall and Precision, is appropriate for evalu-
ating the performance of onset/offset detection algorithms. F1-Score is
defined in Eq. (8) in [80].

F1-Score = 2 × Recall × Precision
Recall + Precision

ecall = 𝑇𝑃𝑠
𝐹𝑁𝑠 + 𝑇𝑃𝑠

Precision = 𝑇𝑃𝑠
𝐹𝑃𝑠 + 𝑇𝑃𝑠

(8)

Recall indicates the proportion of correctly identified bursts com-
pared to the total actual bursts and is calculated as the ratio of true
positive (TP) results to the sum of false negative (FN) and true positive
results. Precision reflects the accuracy of correctly recognized burst
samples relative to all samples identified as bursts and is defined as
the ratio of true positive results to the sum of false positive (FP) and
true positive results [80].

Degree Under Detection (UD) and degree Over Detection (OD). Degree
Under Detection (UD) and Degree Over Detection (OD) are metrics
introduced in [5] to measure the extent to which an algorithm fails
to recognize or over-detects events. UD and OD are defined in Eqs. (9)
and (10) in [5].

𝑂𝐷 = 𝐹𝑃𝑠
𝐹𝑁𝑠 + 𝑇𝑃𝑠

(9)

𝑈𝐷 = 𝐹𝑁𝑠 (10)

𝑇𝑁𝑠 + 𝐹𝑃𝑠

10
rea Under Curve (AUC). The Area Under the Receiver Operating
haracteristic (ROC) curve (AUC) is a commonly used metric for clas-
ifier selection and performance evaluation [80]. In the context of this
tudy, the detection of onsets/offsets in sEMG signals is treated as a
inary classification problem, i.e., the recognition of muscular activity
r non-muscular activity. The AUC is used to evaluate the performance
f various detectors, which are based on different optimization al-
orithms, and indirectly reflects the performance of the optimization
lgorithms.

The ROC plot takes False Positive Rate (FPR) as the 𝑋-axis and True
ositive Rate (TPR) as the Y-axis [80]. TPR and FPR are defined in
qs. (11) and (12).

𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(11)

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(12)

The AUC is calculated as the area under the ROC curve, as defined in
Eq. (13). The closer the AUC value is to the upper left corner (0,1), the
better the performance of the classifier, as a larger AUC value indicates
better performance [80].

𝐴𝑈𝐶 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅 + 1
2

(13)

In this experiment, a point on the ROC graph is calculated for the
detection results of each dataset, and the AUC value is obtained.

Detection Rate: Detection Rate compares the number of onset/
offset pairs detected by the optimization algorithm to the number of
pairs manually identified by an expert [5]. It is expressed as the ratio of
these two numbers, with a value closer to 1 indicating a better detection
result.
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Fig. 4. ACO, TS, GA and SA optimization algorithms added to EMG detector.
.6.2. Efficiency
Besides quality, the execution efficiency of the algorithm also im-

acts its practical use. For instance, real-time detection results are
rucial in wearable sEMG signal detectors [81]. To measure efficiency
n this study, the runtime is used as the metric [77].
Runtime: Runtime is the time taken to complete an optimization,

here ‘‘completion’’ refers to obtaining a feasible solution [77]. This
tudy considers a cost function value threshold as a criterion for feasi-
ility, and the running time is recorded when the cost value falls within
his range. The cost value threshold is determined during testing.

.6.3. Reliability
Meta-heuristic algorithms do not always guarantee optimal re-

ults [12]. To evaluate their performance, reliability is often used as
metric, which is expressed as the success rate or the probability of

he optimization algorithm solving the problem successfully [77]. In
his study, reliability is used to measure the probability of obtaining
easible optimization parameters that allow for accurate detection
esults. Feasibility is defined as the precise accuracy of the detection
esults.
Success Rate: Success criteria is the value of the objective function

r the distance between the solution and the minimum value [77].
n the detection scenario of sEMG onsets/offsets, the success rate is
alculated as the number of successful optimization executions divided
y the total number of executions. The specific value of the F1-Score is
etermined during testing.

.7. Environment and tools

The study used MATLAB R2017b software to implement and run
lgorithms. The code was based on the emgGo project [5] and included
he PSO algorithm. Four additional algorithms (ACO, TS, GA, SA) were
dded to the published emgEventsDetectTool and can be triggered
y the designed interface as shown in Fig. 4 labeled AutoFind (GA),
utoFind (ACO), AutoFind (TS), and AutoFind (SA).

.8. Experimental validation

In our study, experimental validation refers to the process of opti-

izing input parameters using optimization algorithms and evaluating

11
their performance. The experiments conducted in our study are con-
sidered valid for several reasons. Firstly, we provide the details of
already available code used for optimization algorithms, cost functions,
and evaluation metrics, ensuring transparency and reproducibility. Sec-
ondly, the use of sEMG data from 20 participants, provided by our
lab and stated in [75] along with expert-identified onsets and offsets,
enhances the accuracy and reliability of the experiments. Lastly, the
adoption of cross-validation using a leave-p-out approach ensures un-
biased evaluation and robust assessment of the algorithms’ performance
across multiple datasets. These factors contribute to the validity of our
experiments and allow for replication and verification by the research
community.

5. Results and analysis

This section reports on the experimental process and results in
detail. It discusses data preprocessing and the removal of datasets that
could not be detected by the optimized algorithms. Then it explains
cross-validation to obtain input parameters. The quality, efficiency,
and stability of the test results using different optimization algorithms
applied to the onsets/offsets scenario is also discussed. This section also
discusses the pros and cons of each selected algorithm.

5.1. Data preprocessing

The preliminary analysis shows that the detection results from the
selected optimization algorithms are significantly different from expert
identification when the number of muscle activities is ⩽ 21. This
results in low Accuracy and F1-Score values (< 60%). Fig. 5 shows the
detection results using the PSO algorithm on C1, which also have low
Accuracy and F1-Score for datasets D7, D11, D13, and D18 when the
number of muscle activities is ⩽ 21 as shown in Fig. 5.

Fig. 6 shows the detection results using the Ant Colony Optimization
(ACO) algorithm on C2. Similar to the PSO algorithm, when the number
of muscle activities is ⩽ 21, the results are poor. This pattern is also seen
in the detection results from the other three optimization algorithms,
Simulated Annealing (SA), GA, and TS.

Based on the above results, it can be concluded that none of the
selected optimization algorithms are effective for onsets/offsets detec-
tion when the number of muscle activities is ⩽ 21. Thus, the datasets
D7, D11, D13, D17, and D18 are excluded from further comparative

analysis.
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Fig. 5. Detection quality using PSO algorithm.
Fig. 6. Detection quality using ASO algorithm.
Table 8
Detection parameters obtained by the optimization algorithms.

Algorithm Parameters Cost value

𝐿𝑏 𝐾𝑏𝑡ℎ 𝑁𝑠𝑑 𝑇𝑜𝑛 𝑇𝑜𝑓𝑓 Ts 𝑁𝑛𝑡 𝑇𝑗
PSO 0.7460 3.0000 40.0000 0.0100 0.1400 0.5940 5.0000 0.6540 0.0086
ACO 0.5660 2.0000 31.0000 0.0120 0.1460 0.3400 5.0000 2.8080 0.0081
SA 0.9500 1.0000 47.0000 0.0100 0.0680 0.1980 3.0000 0.0240 0.0104
GA 0.4580 2.0000 16.0000 0.0120 0.1360 0.4160 5.0000 2.6080 0.0085
TS 0.3620 2.0000 70.0000 0.0120 0.1420 0.4100 6.0000 0.6800 0.0085
5
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5.2. Detection parameters

Cross-validation was used to obtain the detection parameters, as de-
scribed in Section 4.5. The training set consists of 5 datasets, which are
used to obtain the parameters using the optimization algorithms. These
parameters are then used to detect the remaining four training datasets.
The C2 value is calculated for each detection result by comparing it to
he expert-identified result.

Fig. 7 shows the results of the optimization algorithms in obtaining
arameters via cross-validation. The black line represents the cost
unction value from each training dataset, and the red line is the
verage cost function value of the remaining training datasets. The
etection parameter vector with the lowest mean value is chosen as the
ptimal vector. The PSO, GA, and Tabu Search (TS) algorithms obtain
he optimization parameters from detecting D3, while the Ant Colony
ptimization (ACO) and Simulated Annealing (SA) algorithms obtain

he parameters from detecting D2.
The optimal parameter vectors obtained by each optimization al-

orithm are recorded in Table 8. The cost values corresponding to
hese optimal parameters are between 0.0081 and 0.0104. The pa-
ameters obtained by each algorithm are not similar, so they have no
nterpretable meaning.
12
.3. Quality measurement

This section explains the quality matrices of selected optimization
lgorithms i.e., Accuracy, F1-Score, Degree Under Detection (UD), De-
ree Over Detection (OD), Detection Rate, and Area Under the Curve
AUC).

.3.1. Accuracy, F1-score, degree Under Detection (UD), degree Over De-
ection (OD), detection rate

Table 9 shows the quality metrics of the discussed optimization
lgorithms, including Accuracy, F1-Score, UD, OD, and Detection Rate.
he median, maximum, minimum, and interquartile range (IQR) values
re displayed for each metric.

Each optimization algorithm utilized C1 and C2 as optimization tar-
gets to compute each metric. The comparison among the optimization
algorithms is based on the assumption that the cost function is identical.

The comparison of the results of the optimization algorithms that
used C1 as the optimization objective is shown in Fig. 8. Although there
was a slight variation in the maximum, minimum, and median values
of Accuracy, F1-Score, OD, and UD among the chosen algorithms,
the Simulated Annealing (SA) algorithm performed better, with higher
Accuracy and F1-Score and lower Degree Under Detection (UD) and
Degree Over Detection (OD) values.
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Fig. 7. Obtaining input parameters for detector using cross-validation.
Fig. 8. Comparison of optimization detection results of C1.
Table 9
Quality measurement of the optimization algorithms involved in the detection process.

Measure Accuracy F1-Score UD OD Detection rate

Cost function C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

PSO

Median 95.91 98.33 85.99 95.67 4.96 0.38 0 5.01 100 100
IQR 2.51 1.46 10.88 3.54 3.31 0.68 0.12 6.55 0 3
Max 98.36 99.36 93.08 97.97 20.67 9.27 1.27 28.4 100 108
Min 85.62 91.42 66.92 7.51 1.86 0.05 0 0.53 100 4

ACO

Median 95.78 97.24 86.02 90.21 5.07 0.34 0.02 12.98 100 98
IQR 1.97 3.33 9.57 9.06 2.36 0.7 0.07 19.4 0 4
Max 98.27 99.29 92.7 97.79 23.22 2.38 0.18 43.93 100 100
Min 83.85 93.3 63.86 81.86 1.95 0.02 0 1.2 100 91

SA

Median 96.1 96.74 86.81 88.63 4.48 0.23 0.02 21.45 100 120
IQR 1.85 3.28 8.01 8.98 2.2 0.67 0.06 19.4 0 38
Max 98.43 99.26 93.41 97.77 21.2 2.02 0.13 55.8 100 163
Min 85.25 92.11 66.26 78.11 1.78 0.001 0 3.04 100 100

GA

Median 95.78 96.8 85.75 91.39 5.07 0.31 0.01 12.99 100 98
IQR 2.19 2.79 8.13 8.25 2.6 0.67 0.05 16.2 0 4
Max 98.25 99.34 92.63 97.95 21.14 2.31 0.37 41.31 100 103
Min 85.29 94.01 68.13 79.17 1.98 0.02 0 1.3 100 95

TS

Median 95.75 97.22 84.4 89.14 5.23 0.37 0 13.07 100 100
IQR 1.9 2.41 8.35 6.72 2.49 0.73 0.06 14.61 0 3
Max 98.36 99.34 93.07 97.95 23.05 2.13 0.21 37.24 100 107
Min 83.96 94.7 64.2 81.54 1.87 0.02 0 1.3 100 92
13
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Table 10
The AUC measurement result.

Cost function Method PSO ACO SA GA TS

C1 Average 85.39 85.48 86.02 85.86 85.01
Median 87.71 87.78 88.35 87.53 86.51

C2 Average 93.82 96.40 96.64 96.51 96.79
Median 98.28 96.58 96.92 97.56 97.52

In summary, the results of the detection process using C1 indi-
cate that all the optimization algorithms have a 100% detection rate,
whereas, Simulated Annealing (SA) outperforms the others with higher
Accuracy and F1-Score, and lower UD and OD. However, the PSO algo-
rithm has a higher interquartile range (IQR) value and a higher maxi-
mum value of OD, suggesting that its results are less stable compared
to the other algorithms.

Fig. 9 compares the optimized detection results using C2. It can
be seen that the Simulated Annealing (SA) algorithm detected more
onsets/offsets than the actual number and had a wider range of detec-
tion results compared to the other optimization algorithms. Simulated
Annealing (SA) also had a lower median accuracy, F1-Score, and Degree
Over Detection (OD) results compared to its results when using C1.

The comparison between optimization algorithms when using C2
shows that PSO has better Accuracy, F1-Score, UD, and Degree Over
Detection (OD) but with more outliers than the other algorithms,
suggesting instability in its detection results. The Simulated Annealing
(SA) algorithm produced more onsets/offsets and had a wider range
of detection results, with poorer median values for Accuracy, F1-Score,
and Degree Over Detection (OD) compared to other algorithms.

5.3.2. Area Under the Curve (AUC)
Table 10 shows the comparison of the optimization algorithms in

terms of their AUC scores, with results showing that each algorithm
performed better with C2 compared to C1.

When comparing the performance of the optimization algorithms
sing C2, it is observed that the median AUC value of the PSO algorithm
s higher than that of the other algorithms, although its average value
s lower. This indicates that the results obtained by the PSO algorithm
ave more variability than those obtained by the other algorithms.

.4. Summary of quality measurement results

In conclusion, the results of the comparison between the optimiza-
ion algorithms suggest that when the same cost function is used, the
esults of detection can be similar with respect to the median and
aximum values of Accuracy and F1-Score. However, the stability of

he results varies between algorithms. The PSO algorithm showed a
igher interquartile range (IQR) value when using C1 and more outlier
values when using C2. This is reflected in the lower mean AUC value for a

14
Table 11
F1-Score value corresponding to the cost value mean.

Cost Value F1-Score

⩽0.1169 (Max) >90%
⩽0.1203 (Median) >80%
⩽0.1384 (Max) >80%

PSO compared to the other algorithms. These results indicate that the
PSO algorithm is more random and variable than the other algorithms.

When C1 is used as the cost function, the Simulated Annealing
(SA) algorithm shows better performance in terms of Accuracy, F1-
Score, Degree Over Detection (OD), UD, and AUC compared to other
optimization algorithms, but with slight differences. On the other hand,
when C2 is used, the Simulated Annealing (SA) algorithm detects more
onsets/offsets than the actual amount and returns a higher detection
rate. On the other hand, the other algorithms’ results match the exact
number. PSO algorithm is more random and variable in terms of
AUC, with a higher median but lower mean value compared to other
algorithms.

5.5. Runtime & success rate for efficiency and reliability measurements

The impact of cost function value on test results was demonstrated
in the experiment. The optimal cost value was found to be between
0.0081 and 0.0104 (per Section 4.2). To compare the efficiency and
stability of different optimization algorithms, a cost function threshold
was established, and a successful process was defined as one with a cost
function value less than or equal to the threshold. The runtime of the
optimization algorithm was recorded in this scenario.

The relationship between F1-Score and cost value is shown in
Table 11 for 5 datasets, D1, D2, D3, D4, and D5, using C1. F1-Score
is above 90% when the cost value is 0.1169 or lower and above 80%
when the cost value is 0.1384 or lower. The median cost value for
F1-Score above 80% is 0.1203, and 0.1169, 0.1203, and 0.1384 are
selected as the cost value threshold.

The optimization process using C1 stops when the cost value is less
han or equal to the threshold. This value is considered the input pa-
ameter for the detection algorithm and is deemed a successful process.
f the optimization process does not reach the cost value threshold by
he time the termination condition is met, it is considered a failure.

In each of the ten runs, the optimization algorithms were applied
ith the same cost value threshold and datasets D1, D2, D3, D4, and
5 were used. The results of the optimization process, including the
edian Accuracy and F1-Score of the detection result and the Runtime,

re presented in Table 12.
The results demonstrate that for the same dataset, a smaller cost

alue leads to higher Accuracy. For D1, the best results in Accuracy
nd F1-Score are obtained when the cost value falls between 0.1203

nd 0.1384. A comparison of the runtime of the selected optimization
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Fig. 10. Distribution comparison of runtime, accuracy, and F1-Score values of the optimization algorithms under the condition of cost value ⩽ 0.1384.
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Table 12
Measurement of runtime and success rate under different cost value thresholds.

Cost value Algorithm Accuracy
(%)

F1-Score
(%)

Runtime
(s)

Success
rate

⩽0.150

PSO 98.61 94.26 6.85 100%
ACO 98.15 92.19 32.15 100%
SA 98.66 94.78 9.96 100%
GA 98.91 95.56 63.38 100%
TS 98.35 93.11 12.45 100%

⩽0.1384

PSO 98.96 95.74 12.8 100%
ACO 98.67 94.5 31.39 100%
SA 98.73 94.78 23.43 100%
GA 98.75 95 42.55 100%
TS 98.92 95.6 19.91 100%

⩽0.1203

PSO 98.9 95.47 22.48 100%
ACO 98.66 94.43 35.24 100%
SA 98.84 95.23 33.46 100%
GA 98.71 94.64 51.8 100%
TS 98.65 94.38 141.73 100%

⩽0.1169

PSO 98.56 93.99 52.3 80%
ACO 98.38 93.18 60.87 80%
SA 98.4 93.57 333.31 40%
GA 98.44 93.45 214.02 80%
TS 98.48 93.64 2147.6 90%

algorithms in this cost value range is crucial to determine the best al-
gorithm for onsets/offsets detection. Additionally, Table 12 shows that
the PSO algorithm has the best median values of Accuracy, F1-Score,
and Runtime when the cost value is less than 0.1384.

From the boxplots in Fig. 10, it is evident that PSO has the best
median value for Runtime and a more compact distribution range
compared to the other algorithms. On the other hand, PSO’s Accuracy
and F1-Score values exhibit more variability as compared to the other
four algorithms, which aligns with the previously derived conclusion
from the Quality comparison.

When the cost value threshold was further reduced to 0.1384, the
Success Rate of all algorithms decreased further. The PSO algorithm
had the highest Success Rate of 80%, while the other algorithms had a
Success Rate ranging from 50% to 60%. This comparison clearly shows
that PSO had the best performance in terms of Success Rate and that
the Success Rate of the other algorithms was significantly lower. The
results indicate that PSO is the best algorithm in terms of reliability in
the onset/offset detection scenario when the cost value threshold is set
to 0.1384.

In conclusion, the experimental results demonstrate that the PSO
algorithm achieves the best median values for both Runtime and ef-
ficiency in terms of Accuracy and F1-Score. Table 12 shows that the
PSO algorithm consistently outperforms other algorithms in terms of
Runtime when the cost value threshold is set to 0.1384. Moreover,
 (
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Table 13
Summary of comparisons.

Measurements C1 C2

PSO ACO SA GA TS PSO ACO SA GA TS

Quality

Accuracy ↑ ↑ ↓

F1-Score ↑ ↑ ↓

UD and OD ↑ ↑ ↓

Detection rate ↑ ↑ ↑ ↑ ↑ ↓

AUC ↑ ↑ ↑ ↑ ↑

Efficiency Runtime ↑ ↓ ↑ ↓

Stability Success rate ↓

Stability (IQR) ↓ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↓

Fig. 10 confirms that the PSO algorithm exhibits a more compact
distribution range for Runtime compared to the other algorithms. These
findings emphasize the efficiency of the PSO algorithm, highlighting its
potential for efficient onset/offset detection.

6. Discussion

This section discusses the performance of the selected optimization
algorithms in terms of quality, efficiency, and stability metrics.

6.1. Quality, efficiency, and reliability matrices

This study evaluated the performance of the optimization algo-
rithms discussed in this study based on quality, efficiency, and stability
metrics. The results were summarized in Table 13 where ↓ repre-
ents lower performance compared to others, and ↑ indicates higher
erformance in comparison.

Firstly, the quality of detection results was the focus of this study.
hen the running time was not taken into account, results showed

hat similar quality was obtained from each optimization algorithm
sing C1. Differences between the median index and interquartile range
IQR) values were small. On the other hand, when C2 was used, the PSO
lgorithm produced better quality results with a median value better
han the other algorithms. On the other hand, the Simulated Annealing
SA) algorithm performed relatively poorly.

Secondly, the efficiency of the optimization algorithms was also
valuated. Specifically, the runtime was used to measure the efficiency.
he results showed that the PSO algorithm was the fastest among the
hosen optimization algorithms. However, the Simulated Annealing
SA) algorithm had the slowest runtime and was not as efficient as the
ther algorithms.

Finally, The GA and Ant Colony Optimization (ACO) algorithms
re more stable than PSO, Tabu Search (TS), and Simulated Annealing

SA). The PSO and TS algorithms have higher interquartile range
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(IQR) values for certain measurement indices, indicating lower stability
compared to the GA and Ant Colony Optimization (ACO) algorithms.
Meanwhile, Simulated Annealing (SA)’s instability is reflected in its
higher interquartile range (IQR) value of runtime after setting a cost
value threshold.

In addition to the above, the following conclusions can be made.
The experiments found that the performance of optimization algorithms
may vary depending on factors such as the number of muscle activities,
the optimal parameters obtained, and the design of the cost function.
When the number of muscle activities is less than 21, the accuracy
of the results is unacceptable. Additionally, the optimal parameters
obtained by different optimization algorithms may vary greatly, even
with the same cost function value, potentially losing their business
meaning. The design of the cost function has a significant impact on
the detection results, as the same cost function leads to similar quality
results across algorithms, but different cost functions result in different
measures such as Accuracy, F1-Score, Degree Over Detection (OD), and
Degree Under Detection (UD).

The cost function value plays a role in determining the quality of the
detection results, but a lower cost value does not necessarily indicate
better quality. Based on the study results, the optimal detection results
are obtained when the cost value falls within the range of 0.1203 to
0.1384. Thus, it is crucial to experimentally determine a reasonable cost
value when using optimization algorithms in practice.

The optimization algorithms implemented in this work for on-
set/offset detection (PSO, Ant Colony Optimization (ACO), Simulated
Annealing (SA), GA, and Tabu Search (TS)) can also be effectively
applied to real-time scenarios where timely detection of the beginning
or end of events is crucial. For example, in environmental monitoring,
the algorithms can analyze real-time sensor data to detect the onset of
pollutant levels exceeding acceptable thresholds or the offset of abnor-
mal environmental conditions. In industrial settings, the algorithms can
process continuous data streams from instruments such as oscilloscopes
or spectrometers to identify the start and end of specific process states
or anomalies.

Furthermore, the algorithms can be employed in the Internet of
Things (IoT) devices, where they can analyze real-time sensor data
from smart home devices, wearables, or industrial IoT devices, enabling
the detection of events such as motion patterns, abnormal energy
consumption, or equipment failure. In healthcare, the algorithms can
leverage real-time data from medical devices like heart rate monitors
or EEG devices to detect the onset or offset of critical health events
or abnormal patterns. Additionally, in imaging applications, the al-
gorithms can process real-time image or video streams captured by
surveillance cameras, traffic monitoring systems, or medical imaging
devices, facilitating the detection of objects, anomalies, or changes in
visual data.

Some of the limitations of these optimization algorithms are as
follows. Particle Swarm Optimization (PSO) may suffer from premature
convergence and sensitivity to noise or outliers in the data. Ant Colony
Optimization (ACO) can have high computational complexity and may
require a large number of iterations to converge. Simulated Annealing
(SA) is susceptible to getting trapped in local optima, and its efficiency
depends on the choice of the cooling schedule. Genetic Algorithms
(GA) can become computationally expensive, especially with large
populations or high-dimensional search spaces, and may suffer from
premature convergence. Tabu Search (TS) is sensitive to the tabu length
parameter and can have a higher computational complexity.

7. Conclusions and future work

Optimization algorithms are valuable for onsets/offsets detection in
Surface Electromyography (sEMG) signals, as they improve efficiency
and reduce dependence on manual parameter adjustment while still
obtaining high-quality results. This paper performed a comparative

analysis of the performance of the meta-heuristic global optimization
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algorithms, Particle Swarm Optimization (PSO), Genetic algorithms
(GA), Simulated Annealing (SA), Ant Colony Optimization (ACO), and
Tabu Search (TS) for the onsets/offsets detection process in sEMG
signals, yielding a median Accuracy of over 95%. These algorithms re-
duced the dependence on manual parameter adjustment and improved
detection efficiency. The Particle Swarm Optimization algorithm had
the best median Accuracy and F1-Score compared to the other algo-
rithms. It also showed efficient runtime. However, its results were less
stable, with a wider range of interquartile range (IQR) values compared
to the Genetic algorithms (GA) and Ant Colony Optimization (ACO)
algorithms. This paper provides insights for choosing an algorithm, the
trade-off between quality, efficiency, and stability. Our work primarily
emphasizes the utilization of individual algorithms rather than their
hybridization. However, it is worth exploring the possibility of incor-
porating additional optimization algorithms and hybrid optimization
algorithms in future research to enhance the obtained outcomes.
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